Занятие 22. Точка и многоугольник

1 Перечисляемый тип данных

Перечисляемый тип данных задаётся перечислением тех значений, которые он может принимать. Никакие другие значения переменной перечисляемого типа присвоить нельзя. Каждое значение задаётся некоторым идентификатором и располагается в списке, разделённом запятыми и заключённом в круглые скобки. Например

Type TColor=(red,green,blue);

Переменная типа TColor, определённого выше, может принимать только значения red, green и blue. Перечисляемые типы данных используют для удобочитаемости программы. Для внутреннего хранения компилятор преобразует каждый из заданных идентификаторов в целое число. Первое значение соответствует значению 0, второе 1, третье 2 и т.д. Однако, это не значит, что с переменными такого типа можно осуществлять математические операции. Какое именно число поставлено в соответствие какому идентификатору можно узнать при помощи функции Ord. Например, в примере выше Ord(blue) даст значение 2. Если есть желание изменить внутреннее представление перечисляемого типа, можно написать

Type TColor2=(red,green=10,blue);

Тогда Ord(red) будет равно 0, Ord(green) - 10, Ord(blue) - 11. То есть представление некоторых идентификаторов можно указать явно. Тогда представление следующего идентификатора будет на 1 больше, если оно не задано явно.

Разрешенными для перечисляемых типов являются операции Pred и Succ. Функцию Succ применяют для получения следующего значения переменной, а функцию Pred — предыдущего. Например, если переменная х имеет значение green, то Succ(x) равно blue, а Pred(x) даёт значение red. Нельзя вычислить Pred для наименьшего (первого) значения перечисляемого типа. Не определена также операция Succ для наибольшего (последнего) значения.

2 Попадание точки в многоугольник

Как и в занятии 21, говоря далее о многоугольниках, всегда будем иметь ввиду простой плоский многоугольник.

Задача 1. Заданы координаты вершин $A_1A_2...A_n$ многоугольника в порядке их обхода по или против часовой стрелки и координаты некоторой точки B. Определить, где находится точка B относительно этого многоугольника: внутри, снаружи или на его границе.

Нам уже встречалась похожая задача¹. Но тогда многоугольник был выпуклым. Рассмотрим теперь случай, включающий также и невыпуклые многоугольники.

Алгоритм решения этой задачи можно найти в работах 2 Кормена [2, стр. 1055] и Андреевой [1].

¹См. занятие 20 задачу 6 из заданий для самостоятельного решения

²См. список литературы

Из точки B проводится произвольный луч и определяется, сколько раз он пересекает границу многоугольника. Если количество пересечений нечётно и сама точка B не лежит на границе многоугольника, то она лежит во внутренней его части.

Без ограничения общности можно считать, что луч из точки B направлен параллельно оси x в сторону её положительного направления. При традиционном выборе направления осей это значит, что луч направлен направо. Обозначим этот луч BK.

На рисунке 1 точка B лежит вне многоугольника, и луч BK пересекает границу 4 раза. Он мог делать это любое чётное число раз, в том числе и ни разу. На рисунке 2 точка B расположена внутри многоугольника, и луч BK пересекает его границу 3 раза.

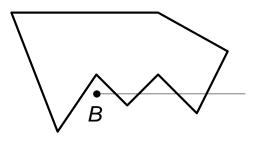


Рис. 1: Точка вне многоугольника.

2.1 Подсчёт количества пересечений границы лучом

Однако не всегда легко подсчитать количество пересечений границы многоугольника лучом

BK. Если стороны многоугольника могут пересекаться лучом каждая не более чем в одной точке, отличной от вершин, то проблем нет. Рисунки 1 и 2 иллюстрируют именно эти случаи. Трудности возникают, когда

1. луч BK пересекает вершину многоугольника (см. рис. 3)

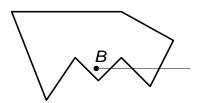


Рис. 2: Точка внутри многоугольника

2. сторона многоугольника полностью принадлежит лучу BK (см. рис. 4)

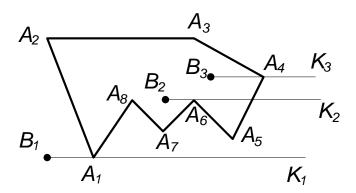


Рис. 3: Луч пересекает вершину

В этих случаях пересечение луча имеет место сразу с несколькими смежными сторонами многоугольника. Будем подсчитывать пересечения луча BK именно со сторонами многоугольника.

2.1.1 Луч пересекает вершину многоугольника

Рассмотрим случай 1. Если луч просто касается границы многоугольника в его вершине, как для луча B_1K_1 и вершины A_1 на рис. 3, то такое пересечение c границей учитывать не надо. Этого можно достичь или учитывая пересечения луча с обеими сторонами A_1A_2 и A_1A_8 , или оба пересечения со сторонами не учитывая. Это не изменит чётности количества пересечений границы, а только она имеет значение для ответа на вопрос задачи. Такой же подход применим и для луча B_2K_2 с вершиной A_6 . Здесь луч B_2K_2 пересекается со сторонами A_5A_6 и A_6A_7 .

Пусть теперь BK действительно пересекает границу многоугольника в его вершине, в том смысле, что часть луча принадлежит многоугольнику, а другая часть нет (рис. 3, вершина A_4 и луч B_3K_3). В этом случае чётность

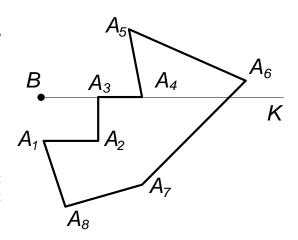


Рис. 4: Сторона многоугольника полностью на луче

пересечений границы многоугольника надо поменять. Этого можно достичь, учитывая пересечения луча с верхними концами сторон многоугольника и не учитывая с ниженими. То есть пересечение B_3K_3 с A_4A_5 учитывать будем, а с A_3A_4 — нет. Заметим, что если придерживаться этого соглашения, то будет корректно обрабатываться и рассмотренный выше случай касания. В вершине A_1 оба пересечения луча со сторонами будут проигнорированы, а в вершине A_6 — оба учтены.

2.1.2 Сторона многоугольника принадлежит лучу

В случае 2 пересечение луча с полностью принадлежащей лучу стороной (но не с другими!) можно просто игнорировать. На рис. 4 можно игнорировать пересечение луча BK со стороной A_3A_4 . Пересечения со сторонами A_2A_3 и A_4A_5 будем рассматривать, учитывая принятую договорённость. Итого будут учтены 2 пересечения BK с границей многоугольника: в точке A_3 и на отрезке A_6A_7 . Чётное число пересечений соответствует положению точки B за пределами многоугольника.

2.2 Определение принадлежности точки отрезку

Пересечения луча с границей многоугольника надо считать, если удалось выяснить, что точка B не лежит на этой границе. А чтобы это проверить, надо решить задачу принадлежности точки отрезку.

Задача 2. Определить, принадлежит ли точка C отрезку AB.

Проведём из точки C векторы \overrightarrow{CA} и \overrightarrow{CB} в концы отрезка AB. Если точка C принадлежит отрезку AB, то либо один из этих векторов равен нулевому вектору, либо угол между \overrightarrow{CA} и \overrightarrow{CB} равен π , т.е. 180 градусов. Дальше можно идти несколькими путями.

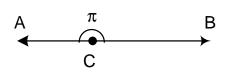


Рис. 5: Принадлежность точки отрезку

2.2.1 Прямое использование скалярного произведения векторов

Допущение 1. Пусть точка C не совпадает ни c одним из концов отрезка AB.

Вычислим скалярное произведение

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = CA \cdot CB \cdot \cos \alpha \tag{1}$$

где α – угол между \overrightarrow{CA} и \overrightarrow{CB} . Если точка C является внутренней точкой отрезка AB, то $\alpha=\pi$, $\cos\pi=-1$ и

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = -CA \cdot CB \tag{2}$$

Более того, как следует из формулы (1), ни для какого другого значения угла $0 \le \alpha \le \pi$ равенство (2) выполняться не может, если только выполняется допущение 1.

Таким образом, проверяя выполнение допущения 1 и равенства (2), можно определить принадлежность точки отрезку.

Но тут может возникнуть одно неудобство. Даже если координаты всех точек — целые числа, при использовании такого подхода нам не удастся избежать вычислений с вещественными числами. Ведь длины отрезков вычисляются через проекции вектора на оси координат с использованием теоремы Пифагора:

$$CA = \sqrt{CA_x^2 + CA_y^2}$$

2.2.2 Использование скалярного и векторного произведений

Вычислим векторное произведение $\overrightarrow{CA} \times \overrightarrow{CB}$. Его равенство $\overrightarrow{0}$ означает, что либо не выполняется допущение 1, либо векторы \overrightarrow{CA} и \overrightarrow{CB} параллельны. В обоих случаях получаем, что точки A, B и C лежат на одной прямой. Вопрос только в том, не лежит ли весь отрезок AB по одну сторону от точки C.

На рис. 6 показан один из таких случаев. Возможно также, что точка C окажется правее отрезка AB. Чтобы распознать эти случаи, используем скалярное произведение $\overrightarrow{CA} \cdot \overrightarrow{CB}$. Как следует из формулы (1), оно положительно тогда и только тогда, когда точки A и B лежат по одну сторону от C и не совпадают с ней.

Рис. 6: Отрезок по одну сторону от точки

Значит, точка C принадлежит отрезку AB тогда и только тогда, когда

$$\overrightarrow{CA} \times \overrightarrow{CB} = \vec{0}$$

И

$$\overrightarrow{CA} \cdot \overrightarrow{CB} \leq 0$$

Заметим также, что если координаты точек — целые числа, то скалярное произведение

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = CA_x \cdot CB_x + CA_y \cdot CB_y \tag{3}$$

тоже целочисленно.

2.3 Определение пересечения отрезка лучом

Подзадачу определения пересечения отрезка лучом BK можно свести к задаче пересечения двух отрезков. Для этого достаточно выбрать точку K так далеко, чтобы её абсцисса была больше абсциссы любой из вершин многоугольника и больше абсциссы точки B.

Задача 3. Определить, имеет ли место пересечение отрезка BK, параллельного оси абсцисс, с отрезком P_1P_2 , если абсцисса точки K больше абсцисс всех остальных точек. Если да, то какой из случаев реализуется:

- 1. отрезок P_1P_2 пересечён в точке P_1 ;
- 2. отрезок P_1P_2 пересечён в точке P_2 ;
- 3. отрезок P_1P_2 пересечён во внутренней точке;
- 4. отрезок P_1P_2 полностью содержится в отрезке BK.

Учитывая, что отрезок BK ориентирован строго вдоль оси x и, кроме того, абсцисса точки K строго больше абсцисс всех других точек, эта задача проще, чем задача 3 занятия 20. Проблема, обозначенная на рис. 10 указанного занятия, решается теперь намного проще. Пересечения отрезков, лежащих на одной прямой, не будет, если точка B лежит правее отрезка P_1P_2 , т.е. $x_B > x_{P_1}$ и $x_B > x_{P_2}$.

В остальном подход остаётся тем же.

Если прямая BK пересекает отрезок P_1P_2 и прямая P_1P_2 пересекает отрезок BK, то отрезки пересекаются, иначе нет. При этом понадобится ещё отслеживать случай попадания концов отрезка P_1P_2 на отрезок BK.

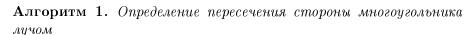
Введём обозначения.

$$\frac{\overrightarrow{c}}{\overrightarrow{d}} = \frac{\overrightarrow{BP_1}}{\overrightarrow{BP_2}} \times \frac{\overrightarrow{BK}}{\overrightarrow{BK}}$$

$$\overrightarrow{e} = \frac{\overrightarrow{P_1B}}{\overrightarrow{P_1K}} \times \frac{\overrightarrow{P_1P_2}}{\overrightarrow{P_1P_2}}$$

$$\overrightarrow{f} = \frac{\overrightarrow{P_1K}}{\overrightarrow{P_1K}} \times \frac{\overrightarrow{P_1P_2}}{\overrightarrow{P_1P_2}}$$

Получается следующий алгоритм.



Если $\vec{c} \uparrow \uparrow \vec{d}$ или $\vec{e} \uparrow \uparrow \vec{f}$, то отрезки не пересекаются 3 .

Иначе если c=0 и d=0, то имеем случай 4 из условия задачи 3.

Иначе если $\vec{c} = \vec{0}$, то имеем случай 1.

Иначе если $\vec{d} = \vec{0}$, то имеем случай 2.

В противном случае имеет место случай 3.

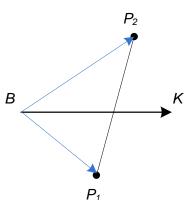


Рис. 7: Пересечение отрез-

2.4 Описание алгоритма

При решении задачи 1 удобно нумеровать вершины многоугольника не с единицы, а с нуля. Тогда легко будет учесть, что при обходе вершин после последней вершины должна идти первая. Для этого достаточно считать, что за вершиной с индексом i следует вершина с индексом $(i+1) \bmod N$, где N — количество вершин многоугольника.

Пусть функция

³Знак ↑↑ означает сонаправленность векторов.

Function PointInSegment(const A,B,C : TPoint) : Boolean;

определяет, принадлежит ли точка C отрезку AB, т.е. решает задачу 2. Для её реализации используем подход, изложенный в пункте 2.2.2.

Пусть функция

```
Function SegIntersect(const p1,p2,b,k : TPoint) : TIntersect;
```

есть реализация алгоритма 1.

В реализации последней функции использован перечисляемый тип данных

```
TIntersect = (S_NONE, S_P1, S_P2, S_INNER, S_BOTH);
```

Значение S_NONE соответствует отсутствию пересечения, S_P1 — пересечению только в точке P_1 , S_P2 — только в точке P_2 , S_INNER — пересечению во внутренней точке, S_BOTH — случаю, когда весь отрезок P_1P_2 принадлежит отрезку BK.

Тогда для решения задачи 1

- 1. Обходим все стороны многоугольника и проверяем, не лежит ли точка B на одной из сторон. Если лежит, решение найдено.
- 2. Находим точку K как точку, абсцисса которой на 1 больше абсциссы самой правой точки из всех точек, о которых идёт речь в задаче. $y_K = y_B$.
- 3. Счётчик count := 0
- 4. Обходим все стороны многоугольника и
 - (a) вычисляем r:=SegIntersect для каждой из них.
 - (b) Если $r=S_INNER$, или пересечение в первой вершине и первая вершина выше второй, или пересечение во второй вершине и вторая вершина выше первой, то count := count + 1
- 5. Если count чётно, то точка B лежит за пределами многоугольника, иначе внутри многоугольника.

2.5 Программа

Программу решения задачи 1 пишем в предположении, что координаты всех точек — целые числа, для хранения которых достаточно 32-битового целого числа. Входные данные читаются из файла input.txt в следующем порядке: количество вершин многоугольника N, в следующих N строках координаты x и y каждой из вершин, далее координаты точки B.

Текст программы на FreePascal смотрите в файле dolschool5.narod.ru/dist/pt inreg.pas

Задания для самостоятельного выполнения

- 1. Можно ли в задаче 1 изменить соглашение об учёте пересечения луча и сторон многоугольника на следующее: учитывать пересечения луча с нижними концами сторон многоугольника и не учитывать с верхними? Потребуется ли после этого существенная переработка алгоритма?
- 2. Попробуйте несколько видоизменить способ определения принадлежности точки отрезку, описанный в пункте 2.2.2, так, чтобы не использовать скалярное произведение. Ориентируйтесь на знаки проекций векторов. Не забудьте, что абсциссы некоторых точек могут оказаться одинаковыми.
- 3. Напишите программу решения задачи 1, проводя не горизонтальный, а вертикальный луч.

Список литературы

- [1] Андреева Е.В., Егоров Ю.Е. Вычислительная геометрия на плоскости. //Информатика N39-44/2002.
- [2] Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: Построение и анализ, 2-е издание. : Пер. с англ. М.: Издательский дом «Вильямс», 2010.
- [3] Фаронов В.В. Турбо Паскаль 7.0. Начальный курс. Учебное пособие. М.: «Нолидж», 1998.